133 research outputs found

    L\'evy-like behavior in deterministic models of intelligent agents exploring heterogeneous environments

    Full text link
    Many studies on animal and human movement patterns report the existence of scaling laws and power-law distributions. Whereas a number of random walk models have been proposed to explain observations, in many situations individuals actually rely on mental maps to explore strongly heterogeneous environments. In this work we study a model of a deterministic walker, visiting sites randomly distributed on the plane and with varying weight or attractiveness. At each step, the walker minimizes a function that depends on the distance to the next unvisited target (cost) and on the weight of that target (gain). If the target weight distribution is a power-law, p(k)kβp(k)\sim k^{-\beta}, in some range of the exponent β\beta, the foraging medium induces movements that are similar to L\'evy flights and are characterized by non-trivial exponents. We explore variations of the choice rule in order to test the robustness of the model and argue that the addition of noise has a limited impact on the dynamics in strongly disordered media.Comment: 15 pages, 7 figures. One section adde

    A New and Elementary CP^n Dyonic Magnon

    Full text link
    We show that the dressing transformation method produces a new type of dyonic CP^n magnon in terms of which all the other known solutions are either composites or arise as special limits. In particular, this includes the embedding of Dorey's dyonic magnon via an RP^3 subspace of CP^n. We also show how to generate Dorey's dyonic magnon directly in the S^n sigma model via the dressing method without resorting to the isomorphism with the SU(2) principle chiral model when n=3. The new dyon is shown to be either a charged dyon or topological kink of the related symmetric-space sine-Gordon theories associated to CP^n and in this sense is a direct generalization of the soliton of the complex sine-Gordon theory.Comment: 21 pages, JHEP3, typos correcte

    Cartografía zapatista para navegar el tiempo. “El pensamiento crítico frente a la hidra capitalista” desde el análisis crítico del discurso

    Get PDF
    El movimiento zapatista ha desarrollado un discurso explícito sobre el tiempo, discurso que llega a radicalizarse hasta el deseo de reconfigurarlo en una rebelión efectuada desde la resistencia. Bajo la perspectiva de la temporalidad como construcción social, se aborda mediante el análisis crítico del discurso cómo la configuración temporal zapatista suscrita en el corpus constituido por los tres volúmenes del texto “El pensamiento crítico frente a la hidra capitalista” (2015) se inserta y comporta en relación con otras formas de concebir y organizar el tiempo, y cómo su configuración particular plantea y posibilita nuevos imaginarios de organización social. Se parte de la hipótesis de que la construcción del futuro (utopística y distopística) zapatista se articula en la interacción de una configuración temporal propia y en prácticas emergentes de organización social.The ZapatistaMovementhas developed an explicit discourse abouttime, a discourse that becomes radicalized up to the point to reconfigure it in a rebellion carried out by the resistance. From the perspective of temporality as a social construction, it is approached through the Critical Discourse Analysis(ACD) how the zapatistatemporal configuration subscribed in the corpus constituted by the three volumes of the text: "Critical thinking against the capitalist hydra"(2015), is inserted and behaves in relation to other ways of conceiving and organizing time, and how its particular configuration, poses and enables new imaginaries of social organization. It is based on the hypothesis that the Zapatista construction of future (utopistic and dystopic) is articulated in the interaction of its own temporal configuration and emerging practices of social organization

    Interface Motion and Pinning in Small World Networks

    Full text link
    We show that the nonequilibrium dynamics of systems with many interacting elements located on a small-world network can be much slower than on regular networks. As an example, we study the phase ordering dynamics of the Ising model on a Watts-Strogatz network, after a quench in the ferromagnetic phase at zero temperature. In one and two dimensions, small-world features produce dynamically frozen configurations, disordered at large length scales, analogous of random field models. This picture differs from the common knowledge (supported by equilibrium results) that ferromagnetic short-cuts connections favor order and uniformity. We briefly discuss some implications of these results regarding the dynamics of social changes.Comment: 4 pages, 5 figures with minor corrections. To appear in Phys. Rev.

    Classical and Quantum Solitons in the Symmetric Space Sine-Gordon Theories

    Full text link
    We construct the soliton solutions in the symmetric space sine-Gordon theories. The latter are a series of integrable field theories in 1+1-dimensions which are associated to a symmetric space F/G, and are related via the Pohlmeyer reduction to theories of strings moving on symmetric spaces. We show that the solitons are kinks that carry an internal moduli space that can be identified with a particular co-adjoint orbit of the unbroken subgroup H of G. Classically the solitons come in a continuous spectrum which encompasses the perturbative fluctuations of the theory as the kink charge becomes small. We show that the solitons can be quantized by allowing the collective coordinates to be time-dependent to yield a form of quantum mechanics on the co-adjoint orbit. The quantum states correspond to symmetric tensor representations of the symmetry group H and have the interpretation of a fuzzy geometric version of the co-adjoint orbit. The quantized finite tower of soliton states includes the perturbative modes at the base.Comment: 53 pages, additional comments and small errors corrected, final journal versio

    Scale-free movement patterns in termites emerge from social interactions and preferential attachments

    Get PDF
    As the number or density of interacting individuals in a social group increases, a transition can develop from uncorrelated and disordered behaviour of the individuals to a collective coherent pattern. We expand this observation by exploring the fine details of termite movement patterns to demonstrate that the value of the scaling exponent µ of a power-law describing the Lévy walk of an individual is modified collectively as the density of animals in the group changes. This effect is absent when termites interact with inert obstacles. We also show that the network of encounters and interactions among specific individuals is selective resembling a preferential attachment mechanism which is important for social networking. TeOur data suggest strongly that preferential attachments, a phenomenon not reported previously, and favourite interactions with a limited number of acquaintances are responsible for the generation of Lévy movement patterns in these social insects

    The AdS(5)xS(5) Semi-Symmetric Space Sine-Gordon Theory

    Full text link
    The generalized symmetric space sine-Gordon theories are a series of 1+1-integrable field theories that are classically equivalent to superstrings on symmetric space spacetimes F/G. They are formulated in terms of a semi-symmetric space as a gauged WZW model with fermions and a potential term to deform it away from the conformal fixed point. We consider in particular the case of PSU(2,2|4)/Sp(2,2)xSp(4) which corresponds to AdS(5)xS(5). We argue that the infinite tower of conserved charges of these theories includes an exotic N=(8,8) supersymmetry that is realized in a mildy non-local way at the Lagrangian level. The supersymmetry is associated to a double central extension of the superalgebra psu(2|2)+psu(2|2) and includes a non-trivial R symmetry algebra corresponding to global gauge transformations, as well as 2-dimensional spacetime translations. We then explicitly construct soliton solutions and show that they carry an internal moduli superspace CP(2|1)xCP(2|1) with both bosonic and Grassmann collective coordinates. We show how to semi-classical quantize the solitons by writing an effective quantum mechanical system on the moduli space which takes the form of a co-adjoint orbit of SU(2|2)xSU(2|2). The spectrum consists of a tower of massive states in the short, or atypical, symmetric representations, just as the giant magnon states of the string world sheet theory, although here the tower is truncated.Comment: 39 pages, references adde

    Modeling the Searching Behavior of Social Monkeys

    Full text link
    We discuss various features of the trajectories of spider monkeys looking for food in a tropical forest, as observed recently in an extensive {\it in situ} study. Some of the features observed can be interpreted as the result of social interactions. In addition, a simple model of deterministic walk in a random environment reproduces the observed angular correlations between successive steps, and in some cases, the emergence of L\'evy distributions for the length of the steps.Comment: 7 pages, 3 figure

    Magnons, their Solitonic Avatars and the Pohlmeyer Reduction

    Full text link
    We study the solitons of the symmetric space sine-Gordon theories that arise once the Pohlmeyer reduction has been imposed on a sigma model with the symmetric space as target. Under this map the solitons arise as giant magnons that are relevant to string theory in the context of the AdS/CFT correspondence. In particular, we consider the cases S^n, CP^n and SU(n) in some detail. We clarify the construction of the charges carried by the solitons and also address the possible Lagrangian formulations of the symmetric space sine-Gordon theories. We show that the dressing, or Backlund, transformation naturally produces solitons directly in both the sigma model and the symmetric space sine-Gordon equations without the need to explicitly map from one to the other. In particular, we obtain a new magnon solution in CP^3. We show that the dressing method does not produce the more general "dyonic" solutions which involve non-trivial motion of the collective coordinates carried by the solitons.Comment: 52 page

    A Deterministic Metaheuristic Approach using "Logistic Ants" for Combinatorial Optimization.

    Get PDF
    International audienceAnt algorithms are usually derived from a stochastic modeling based on some specific probability laws. We consider in this paper a full deterministic model of “logistic ants” which uses chaotic maps to govern the behavior of the artificial ants. We illustrate and test this approach on a TSP instance, and compare the results with the original Ant System algorithm. This change of paradigm —deterministic versus stochastic— implies a novel view of the internal mechanisms involved during the searching and optimizing process of ants
    corecore